*** Welcome to piglix ***

Complete induction


Mathematical induction is a mathematical proof technique used to prove a given statement about any well-ordered set. Most commonly, it is used to establish statements for the set of all natural numbers.

Mathematical induction is a form of direct proof, usually done in two steps. When trying to prove a given statement for a set of natural numbers, the first step, known as the base case, is to prove the given statement for the first natural number. The second step, known as the inductive step, is to prove that, if the statement is assumed to be true for any one natural number, then it must be true for the next natural number as well. Having proved these two steps, the rule of inference establishes the statement to be true for all natural numbers. In common terminology, using the stated approach is referred to as using the Principle of mathematical induction.

The method can be extended to prove statements about more general well-founded structures, such as trees; this generalization, known as structural induction, is used in mathematical logic and computer science. Mathematical induction in this extended sense is closely related to recursion. Mathematical induction, in some form, is the foundation of all correctness proofs for computer programs.

Although its name may suggest otherwise, mathematical induction should not be misconstrued as a form of inductive reasoning (also see Problem of induction). Mathematical induction is an inference rule used in proofs. In mathematics, proofs including those using mathematical induction are examples of deductive reasoning, and inductive reasoning is excluded from proofs.


...
Wikipedia

...