*** Welcome to piglix ***

Color system


A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted (viewing conditions, etc.), the resulting set of colors is called color space. This section describes ways in which human color vision can be modeled.

One can picture this space as a region in three-dimensional Euclidean space if one identifies the x, y, and z axes with the stimuli for the long-wavelength (L), medium-wavelength (M), and short-wavelength (S) light receptors. The origin, (S,M,L) = (0,0,0), corresponds to black. White has no definite position in this diagram; rather it is defined according to the color temperature or white balance as desired or as available from ambient lighting. The human color space is a horse-shoe-shaped cone such as shown here (see also CIE chromaticity diagram below), extending from the origin to, in principle, infinity. In practice, the human color receptors will be saturated or even be damaged at extremely high light intensities, but such behavior is not part of the CIE color space and neither is the changing color perception at low light levels (see: Kruithof curve).

The most saturated colors are located at the outer rim of the region, with brighter colors farther removed from the origin. As far as the responses of the receptors in the eye are concerned, there is no such thing as "brown" or "gray" light. The latter color names refer to orange and white light respectively, with an intensity that is lower than the light from surrounding areas. One can observe this by watching the screen of an overhead projector during a meeting: one sees black lettering on a white background, even though the "black" has in fact not become darker than the white screen on which it is projected before the projector was turned on. The "black" areas have not actually become darker but appear "black" relative to the higher intensity "white" projected onto the screen around it. See also color constancy.


...
Wikipedia

...