The color temperature of a light source is the temperature of an ideal black-body radiator that radiates light of comparable color to that of the light source. Color temperature is a characteristic of visible light that has important applications in lighting, photography, videography, publishing, manufacturing, astrophysics, horticulture, and other fields. In practice, color temperature is meaningful only for light sources that do in fact correspond somewhat closely to the radiation of some black body, i.e., those on a line from reddish/orange via yellow and more or less white to blueish white; it does not make sense to speak of the color temperature of, e.g., a green or a purple light. Color temperature is conventionally expressed in kelvins, using the symbol K, a unit of measure for absolute temperature.
Color temperatures over 5000 K are called cool colors (bluish white), while lower color temperatures (2700–3000 K) are called warm colors (yellowish white through red).Warm in this context refers to radiated heat flux rather than temperature; the spectral peak of warm-coloured light is closer to infra-red and most natural warm-coloured light sources emit significant infra-red radiation.
compact fluorescent lamps (CFL)
The color temperature of the electromagnetic radiation emitted from an ideal black body is defined as its surface temperature in kelvins, or alternatively in mireds (micro-reciprocal kelvins). This permits the definition of a standard by which light sources are compared.
To the extent that a hot surface emits thermal radiation but is not an ideal black-body radiator, the color temperature of the light is not the actual temperature of the surface. An incandescent lamp's light is thermal radiation, and the bulb approximates an ideal black-body radiator, so its color temperature is essentially the temperature of the filament. Thus a relatively low temperature emits a dull red and a high temperature emits the almost white of the traditional incandescent light bulb