*** Welcome to piglix ***

Coffee ring effect


In physics, a "coffee ring" is a pattern left by a puddle of particle-laden liquid after it evaporates. The phenomenon is named for the characteristic ring-like deposit along the perimeter of a spill of coffee. It is also commonly seen after spilling red wine. The mechanism behind the formation of these and similar rings is known as the coffee ring effect or in some instances, the coffee stain effect, or simply ring stain.

The coffee-ring pattern originates from the capillary flow induced by the differential evaporation rates across the drop: liquid evaporating from the edge is replenished by liquid from the interior. The resulting edgeward flow can carry nearly all the dispersed material to the edge. As a function of time, this process exhibit a "rush-our" effect, that is, a rapid acceleration of the edgeward flow at the final stage of the drying process.

Evaporation induces a Marangoni flow inside a droplet. The flow, if strong, redistributes particles back to the center of the droplet. Thus, for particles to accumulate at the edges, the liquid must have a weak Marangoni flow, or something must occur to disrupt the flow. For example, surfactants can be added to reduce the liquid's surface tension gradient, disrupting the induced flow. Water has a weak Marangoni flow to begin with, which is then reduced significantly by natural surfactants.

Interaction of the particles suspended in a droplet with the free surface of the droplet is important in creating a coffee ring. "When the drop evaporates, the free surface collapses and traps the suspended particles .. eventually all the particles are captured by the free surface and stay there for the rest of their trip towards the edge of the drop." This result means that surfactants can be used to manipulate the motion of the solute particles by changing the surface tension of the drop, rather than trying to control the bulk flow inside the drop.

The coffee-ring pattern is detrimental when uniform application of a dried deposit is required, such as in printed electronics. It can be suppressed by adding elongated particles, such as cellulose fibers, to the spherical particles that cause the coffee-ring effect. The size and weight fraction of added particles may be smaller than those of the primary ones.

Mixtures of low boiling point and high boiling point solvents were shown to suppress the coffee ring effect, changing the shape of a deposited solute from a ring-like to a dot-like shape.


...
Wikipedia

...