In chemistry, a cluster is an ensemble of bound atoms or molecules that is intermediate in size between a molecule and a bulk solid. Clusters exist of diverse stoichiometries and nuclearities. For example, carbon and boron atoms form fullerene and borane clusters, respectively. Transition metals and main group elements form especially robust clusters. Clusters can also consist solely of a certain kind of molecules, such as water clusters.
The phrase cluster was coined by F.A. Cotton in the early 1960s to refer to compounds containing metal–metal bonds. In another definition a cluster compound contains a group of two or more metal atoms where direct and substantial metal bonding is present. The prefixed terms "nuclear" and "metallic" are used and imply different meanings. For example, polynuclear refers to a cluster with more than one metal atom, regardless of the elemental identities. Heteronuclear refers to a cluster with at least two different metal elements.
The main cluster types are "naked" clusters (without stabilizing ligands) and those with ligands. For transition metal clusters, typical stabilizing ligands include carbon monoxide, halides, isocyanides, alkenes, and hydrides. For main group elements, typical clusters are stabilized by hydride ligands.
Transition metal clusters are frequently composed of refractory metal atoms. In general metal centers with extended d-orbitals form stable clusters because of favorable overlap of valence orbitals. Thus, metals with a low oxidation state for the later metals and mid-oxidation states for the early metals tend to form stable clusters. Polynuclear metal carbonyls are generally found in late transition metals with low formal oxidation states. The polyhedral skeletal electron pair theory or Wade's electron counting rules predict trends in the stability and structures of many metal clusters. Jemmis mno rules have provided additional insight into the relative stability of metal clusters.