In mathematics, Clifford's theorem on special divisors is a result of W. K. Clifford (1878) on algebraic curves, showing the constraints on special linear systems on a curve C.
If D is a divisor on C, then D is (abstractly) a formal sum of points P on C (with integer coefficients), and in this application a set of constraints to be applied to functions on C (if C is a Riemann surface, these are meromorphic functions, and in general lie in the function field of C). Functions in this sense have a divisor of zeros and poles, counted with multiplicity; a divisor D is here of interest as a set of constraints on functions, insisting that poles at given points are only as bad as the positive coefficients in D indicate, and that zeros at points in D with a negative coefficient have at least that multiplicity. The dimension of the vector space
of such functions is finite, and denoted ℓ(D). Conventionally the linear system of divisors attached to D is then attributed dimension r(D) = ℓ(D) − 1, which is the dimension of the projective space parametrizing it.
The other significant invariant of D is its degree, d, which is the sum of all its coefficients.
A divisor is called special if ℓ(K − D) > 0, where K is the canonical divisor.
In this notation, Clifford's theorem is the statement that for an effective special divisor D,