The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict non-classical behavior.
A heuristic postulate called the correspondence principle was introduced to quantum theory by Niels Bohr: in effect it states that some kind of continuity argument should apply to the classical limit of quantum systems as the value of Planck's constant normalized by the action of these systems becomes very small. Often, this is approached through "quasi-classical" techniques (cf. WKB approximation).
More rigorously, the mathematical operation involved in classical limits is a group contraction, approximating physical systems where the relevant action is much larger than Planck's constant ħ, so the "deformation parameter" ħ/S can be effectively taken to be zero (cf. Weyl quantization.) Thus typically, quantum commutators (equivalently, Moyal brackets) reduce to Poisson brackets, in a group contraction.
In quantum mechanics, due to Heisenberg's uncertainty principle, an electron can never be at rest; it must always have a non-zero kinetic energy, a result not found in classical mechanics. For example, if we consider something very large relative to an electron, like a baseball, the uncertainty principle predicts that it cannot really have zero kinetic energy, but the uncertainty in kinetic energy is so small that the baseball can effectively appear to be at rest, and hence it appears to obey classical mechanics. In general, if large energies and large objects (relative to the size and energy levels of an electron) are considered in quantum mechanics, the result will appear to obey classical mechanics. The typical occupation numbers involved are huge: a macroscopic harmonic oscillator with ω = 2 Hz, m = 10 g, and maximum amplitude x0 = 10 cm, has S ≈ E/ω ≈ mωx2
0/2 ≈ 10−4 kg·m2/s = ħn , so that n ≃ 1030. Further see coherent states. It is less clear, however, how the classical limit applies to chaotic systems, a field known as quantum chaos.