In physics, the correspondence principle states that the behavior of systems described by the theory of quantum mechanics (or by the old quantum theory) reproduces classical physics in the limit of large quantum numbers. In other words, it says that for large orbits and for large energies, quantum calculations must agree with classical calculations.
The principle was formulated by Niels Bohr in 1920, though he had previously made use of it as early as 1913 in developing his model of the atom.
The term is also used more generally, to represent the idea that a new theory should reproduce the results of older well-established theories (which become limiting cases) in those domains where the old theories work.
Classical quantities appear in quantum mechanics in the form of expected values of observables, and as such the Ehrenfest theorem (which predicts the time evolution of the expected values) lends support to the correspondence principle.
The rules of quantum mechanics are highly successful in describing microscopic objects, atoms and elementary particles. But macroscopic systems, like springs and capacitors, are accurately described by classical theories like classical mechanics and classical electrodynamics. If quantum mechanics were to be applicable to macroscopic objects, there must be some limit in which quantum mechanics reduces to classical mechanics. Bohr's correspondence principle demands that classical physics and quantum physics give the same answer when the systems become large. A. Sommerfeld (1924) referred to the principle as "Bohrs Zauberstab" (Bohr's magic wand).