In physics, classical mechanics (also known as Newtonian mechanics) is one of two major sub-fields of mechanics. The other sub-field is quantum mechanics. Classical mechanics is concerned with the set of physical laws describing the motion of bodies under the influence of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of the oldest and largest subjects in science, engineering and technology. though textbook authors often consider Newtonian mechanics, along with Lagrangian mechanics and Hamiltonian mechanics, as the three main formalisms of classical mechanics.
Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars and galaxies. Within classical mechanics are sub-fields, including those that describe the behavior of solids, liquids and gases. Classical mechanics provides extremely accurate results when studying large objects that are not extremely heavy (i.e. their Schwarzschild radius is negligibly small for a given application) and speeds not approaching the speed of light. When the objects being examined are sufficiently small, it becomes necessary to introduce the other major sub-field of mechanics: quantum mechanics. This sub-field adjusts the laws of physics of macroscopic objects for the atomic nature of matter by including the wave–particle duality of atoms and molecules. When neither quantum nor classical mechanics apply and the objects are not extremely heavy, such as at the quantum level with high speeds, quantum field theory (QFT) becomes applicable. In case that objects become extremely heavy, deviations from Newtonian mechanics become apparent and can be quantified by using the Parameterized post-Newtonian formalism. In that case, General relativity (GR) becomes applicable. However, until now there is no theory of Quantum gravity unifying GR and QFT in the sense that it could be used when objects become extremely small and heavy.