*** Welcome to piglix ***

Chlorotrimethylsilane

Trimethylsilyl chloride
TMSCl
Ball-and-stick model of the trimethylsilyl chloride molecule
Space-filling model of the trimethylsilyl chloride molecule
Names
Preferred IUPAC name
Chloro(trimethyl)silane
Other names
Trimethylsilyl chloride
Chlorotrimethylsilane
TMSCl
Trimethylchlorosilane
TMCS
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.000.819
PubChem CID
RTECS number VV2710000
Properties
C3H9SiCl
Molar mass 108.64 g/mol
Appearance Colorless liquid, fumes in moist air
Density 0.856 g/cm3, liquid
Melting point −40 °C (−40 °F; 233 K)
Boiling point 57 °C (135 °F; 330 K)
reacts
-77.36·10−6 cm3/mol
Structure
tetrahedral at Si
Hazards
Flammable (F)
Corrosive (C)
R-phrases (outdated) R11, R14, R20, R21, R35, R37
S-phrases (outdated) S16, S26, S36, S37, S39, S45
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g., phosphorus Special hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
Flash point −28 °C (−18 °F; 245 K)
400 °C (752 °F; 673 K)
Related compounds
Related halosilanes
Trimethylsilyl fluoride
Trimethylsilyl bromide
Trimethylsilyl iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound (silyl halide), with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.

TMSCl is prepared on a large scale by the Direct process, the reaction of methyl chloride with a silicon-copper alloy. The principal target of this process is dimethyldichlorosilane, but substantial amounts of the trimethyl and monomethyl products are also obtained. The relevant reactions are (Me = CH3):

Typically about 2-4% of the product stream is the monochloride, which forms an azeotrope with MeSiCl3.

TMSCl is reactive toward nucleophiles, resulting in the replacement of the chloride. In a characteristic reaction of TMSCl, the nucleophile is water, resulting in hydrolysis to give the hexamethyldisiloxane:

The related reaction of trimethylsilyl chloride with alcohols can be exploited to produce anhydrous solutions of hydrochloric acid in alcohols, which find use in the mild synthesis of esters from carboxylic acids and nitriles as well as, acetals from ketones. Similarly, trimethylsilyl chloride is also used to silanize laboratory glassware, making the surfaces more lipophilic.

By the process of silylation, polar functional groups such as alcohols and amines readily undergo reaction with trimethylsilyl chloride, giving trimethylsilyl ethers and trimethylsilyl amines. These new groups "protect" the original functional group by removing the labile protons and decreasing the basicity of the heteroatom. The lability of the Me3Si-O and Me3Si-N groups can later be removed ("deprotected"). Trimethylsilylation can also be used to increase the volatility of a compound, enabling gas chromatography of normally nonvolatile substances such as glucose. Trimethylsilyl chloride also reacts with metal acetylides to give trimethylsilyl alkynes such as bis(trimethylsilyl)acetylene. Such derivatives are useful protected forms of alkynes.


...
Wikipedia

...