*** Welcome to piglix ***

Chern–Simons


The Chern–Simons theory, named after Shiing-Shen Chern and James Harris Simons, is a 3-dimensional topological quantum field theory of Schwarz type, developed by Edward Witten. It is so named because its action is proportional to the integral of the Chern–Simons 3-form.

In condensed-matter physics, Chern–Simons theory describes the topological order in fractional quantum Hall effect states. In mathematics, it has been used to calculate knot invariants and three-manifold invariants such as the Jones polynomial.

Particularly, Chern–Simons theory is specified by a choice of simple Lie group G known as the gauge group of the theory and also a number referred to as the level of the theory, which is a constant that multiplies the action. The action is gauge dependent, however the partition function of the quantum theory is well-defined when the level is an integer and the gauge field strength vanishes on all boundaries of the 3-dimensional spacetime.

In the 1940s S. S. Chern and A. Weil studied the global curvature properties of smooth manifolds M as de Rham cohomology (Chern–Weil theory), which is an important step in the theory of characteristic classes in differential geometry. Given a flat G-principal bundle P on M there exists a unique homomorphism, called Chern–Weil homomorphism, from the algebra of G-adjoint invariant polynomial on g (Lie algebra of G) to the cohomology . If the invariant polynomial is homogeneous one can write down concretely any k-form of the closed connection ω as some 2k-form of the associated curvature form Ω of ω.


...
Wikipedia

...