In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.
Let G be a real or complex Lie group with Lie algebra ; and let denote the algebra of -valued polynomials on (exactly the same argument works if we used instead of .) Let be the subalgebra of fixed points in under the adjoint action of G; that is, it consists of all polynomials f such that for any g in G and x in ,