Chalcogenide glass (hard "ch" as in "chemistry") is a glass containing one or more chalcogens (sulfur, selenium and tellurium, but excluding oxygen). Such glasses are covalently bonded materials and may be classified as covalent network solids. Polonium is also a chalcogen but is not used because of its strong radioactivity. Chalcogenide materials behave rather differently from oxides, in particular their lower band gaps contribute to very dissimilar optical and electrical properties.
The classical chalcogenide glasses (mainly sulfur-based ones such as As-S or Ge-S) are strong glass-formers and possess glasses within large concentration regions. Glass-forming abilities decrease with increasing molar weight of constituent elements; i.e., S > Se > Te.
Chalcogenide compounds such as AgInSbTe and GeSbTe are used in rewritable optical disks and phase-change memory devices -they are fragile glass-formers; by controlling heating and annealing (cooling), they can be switched between an amorphous (glassy) and a crystalline state, thereby changing their optical and electrical properties and allowing the storage of information.
Most stable binary chalcogenide glasses are compounds of a chalcogen and a group 14 or 15 element and may be formed in a wide range of atomic ratios. Ternary glasses are also known.
Not all chalcogenide compositions exist in glassy form, though it is possible to find materials with which these non-glass-forming compositions can be alloyed in order to form a glass. An example of this is gallium sulphide-based glasses. Gallium(III) sulphide on its own is not a known glass former; however, with sodium or lanthanum sulphides it forms a glass, gallium lanthanum sulphide (GLS).