*** Welcome to piglix ***

Cayley–Hamilton theorem



In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex field) satisfies its own characteristic equation.

If A is a given n×n matrix and In  is the n×n identity matrix, then the characteristic polynomial of A is defined as

where det is the determinant operation and λ is a scalar element of the base ring. Since the entries of the matrix are (linear or constant) polynomials in λ, the determinant is also an n-th order monic polynomial in λ. The Cayley–Hamilton theorem states that substituting the matrix A for λ in this polynomial results in the zero matrix,

The powers of A, obtained by substitution from powers of λ, are defined by repeated matrix multiplication; the constant term of p(λ) gives a multiple of the power A0, which is defined as the identity matrix. The theorem allows An to be expressed as a linear combination of the lower matrix powers of A. When the ring is a field, the Cayley–Hamilton theorem is equivalent to the statement that the minimal polynomial of a square matrix divides its characteristic polynomial.


...
Wikipedia

...