In mathematics, the Cauchy–Schwarz inequality, also known as the Cauchy–Bunyakovsky–Schwarz inequality, is a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. It is considered to be one of the most important inequalities in all of mathematics.
The inequality for sums was published by Augustin-Louis Cauchy (1821), while the corresponding inequality for integrals was first proved by Viktor Bunyakovsky (1859). The modern proof of the integral inequality was given by Hermann Amandus Schwarz (1888).
The Cauchy–Schwarz inequality states that for all vectors and of an inner product space it is true that