*** Welcome to piglix ***

Cardiomyoplasty

Cardiomyoplasty
Intervention
ICD-9-CM 37.67
MeSH D018421
[]

Cardiomyoplasty is a surgical procedure in which healthy muscle from another part of the body is wrapped around the heart to provide support for the failing heart. Most often the latissimus dorsi muscle is used for this purpose. A special pacemaker is implanted to make the skeletal muscle contract. Cardiomyoplasty is related to damaged myocardium remodeling.

Tissue engineering, which is now being categorized as a form of regenerative medicine, can be defined as biomedical engineering to reconstruct, repair, and improve biological tissues. Research efforts in tissue engineering have been ongoing and it is emerging as one of the key areas of medical research. Furthermore, there are vast developments in tissue engineering, which involve leveraging of technologies from biomaterials, molecular medicine, biochemistry, nanotechnology, genetic and biomedical engineering for regeneration and cell expansion targets to restructure and/or repair human organs. Injection of cardiomyogenic and/or angiogenic stem cells have been proposed as alternatives to existing treatments. For cardiovascular application, skeletal myoblasts are of great interest as they can be easily isolated and are associated with high proliferation rate. These cells have also been demonstrated to be hypoxia-resistant.

Bone marrow contains different cell populations, which exhibit excellent plasticity toward cardiogenic and endothelial cells . These cell populations are endothelial progenitor cells, hematopoietic stem cells and mesenchymal stem cells. Adipose tissue host progenitor cells with reported interesting cardiomyogenic and vasculogenic potential in the sense that they improve heart functions and reduce infarction size in rodent animal models. Subcutaneous adipose tissue is also a source of mesenchymal stem cells and have demonstrated positive outcomes in terms of cardiovascular tissue remodeling. Recent studies have suggested that mammal hearts also host naturally occurring cardiac stem cells which are capable of differentiating themselves into cardiomyocytes, endothelial cells and cardiac fibroblasts. This self-regeneration capacity gives rise to alternatives to classical cellular therapies whereby administration of growth factors such as Thymosin β4 for cell activation and migration are solely necessary. Largely democratized in terms of population information, embryonic stem cells are known for their strong capacity for expansion and differentiation into cardiomyocytes, endothelial cells and cardiac fibroblasts.

However, if non autologous, immunosuppression therapy is associated with such treatment. Hence, research has been focused on induced pluripotent stem cells (iPSCs) from somatic human tissue. Further to cell and necessary relevant growth factor selection, cell delivery is an important issue. Indeed, the intracoronary route is the most straightforward cell delivery route as associated with intramyocardial cellular retention; rentention rates are however low, i.e. exceed 10%. Washed off cells reach other organs or die, which can be an issue at the time of prepare ICH module 8. Other alternative injection routes have been studied, namely injection via sternotomy, endomyocardial and intracoronary routes. Nevertheless, all methods aforementioned have been associated with limited cardiac function improvements and limited cell survival once implanted in the fibrous myocardium.


...
Wikipedia

...