*** Welcome to piglix ***

Carbon to nitrogen ratio


A carbon-to-nitrogen ratio (C/N ratio or C:N ratio) is a ratio of the mass of carbon to the mass of nitrogen in a substance. It can, amongst other things, be used in analysing sediments and compost. A useful application for C/N ratios is as a proxy for paleoclimate research, having different uses whether the sediment cores are terrestrial-based or marine-based. Carbon-to-nitrogen ratios are an indicator for nitrogen limitation of plants and other organisms and can identify whether molecules found in the sediment under study come from land-based or algal plants. Further, they can distinguish between different land-based plants, depending on the type of photosynthesis they undergo. Therefore, the C/N ratio serves as a tool for understanding the sources of sedimentary organic matter, which can lead to information about the ecology, climate, and ocean circulation at different times in Earth’s history.

C/N ratios in the range 4-10:1 are usually from marine sources, whereas higher ratios are likely to come from a terrestrial source. Vascular plants from terrestrial sources tend to have C/N ratios greater than 20. The lack of cellulose, which has a chemical formula of (C6H10O5)n, and greater amount of proteins in algae versus vascular plants causes this significant difference in the C/N ratio.

When composting, microbial activity utilizes a C/N ratio of 30-35:1 and a higher ratio will result in slower composting rates. However, this assumes that carbon is completely consumed, which is often not the case. Thus, for practical agricultural purposes, a compost should have an initial C/N ratio of 20-30:1.

Example of devices that can be used to measure this ratio are the CHN analyzer and the continuous-flow isotope ratio mass spectrometer (CF-IRMS). However, for more practical applications, desired C/N ratios can be achieved by blending common used substrates of known C/N content, which are readily available and easy to use.

Organic matter that is deposited in marine sediments contains a key indicator as to its source and the processes it underwent before reaching the floor as well as after deposition, its carbon to nitrogen ratio. In the global oceans, freshly produced algae in the surface ocean typically have a carbon to nitrogen ratio of about 4 to 10. However, it has been observed that only 10% of this organic matter (algae) produced in the surface ocean sinks to the deep ocean without being degraded by bacteria in transit, and only about 1% is permanently buried in the sediment. An important process called sediment diagenesis accounts for the other 9% of organic carbon that sank to the deep ocean floor, but was not permanently buried, that is 9% of the total organic carbon produced is degraded in the deep ocean. The microbial communities utilizing the sinking organic carbon as an energy source are partial to nitrogen-rich compounds because much of these bacterium are nitrogen-limited and much prefer it over carbon. As a result, the carbon to nitrogen ratio of sinking organic carbon in the deep ocean is elevated compared to fresh surface ocean organic matter that had not been degraded. An exponential increase in C/N ratios is observed with increasing water depth—with C/N ratios reaching 10 at intermediate water depths of about 1000 meters, and up to 15 in the deep ocean (~ >2500 meters). This elevated C/N signature is preserved in the sediment, until another form of diagenesis, post-depositional diagenesis, alters its C/N signature once again. Post-depositional diagenesis occurs in organic-carbon-poor marine sediments where bacteria are able to oxidize organic matter in aerobic conditions as an energy source. The oxidation reaction proceeds as follows: CH2O + H2O → CO2 + 4H+ + 4e, with a standard free energy of –27.4 kJ mol−1 (half reaction). Once all of the oxygen is used up, bacteria are able to carry out an anoxic sequence of chemical reactions as an energy source, all with negative ∆G°r values, with the reaction becoming less favorable as the chain of reactions proceeds.


...
Wikipedia

...