In mathematics, the Cameron–Martin theorem or Cameron–Martin formula (named after Robert Horton Cameron and W. T. Martin) is a theorem of measure theory that describes how abstract Wiener measure changes under translation by certain elements of the Cameron–Martin Hilbert space.
The standard Gaussian measure γn on n-dimensional Euclidean space Rn is not translation-invariant. (In fact, there is a unique translation invariant Radon measure up to scale by Haar's theorem: the n-dimensional Lebesgue measure, denoted here dx.) Instead, a measurable subset A has Gaussian measure
Here refers to the standard Euclidean dot product in Rn. The Gaussian measure of the translation of A by a vector h ∈ Rn is