*** Welcome to piglix ***

Call stack


In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to just "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks.

A call stack is used for several related purposes, but the main reason for having one is to keep track of the point to which each active subroutine should return control when it finishes executing. An active subroutine is one that has been called but is yet to complete execution after which control should be handed back to the point of call. Such activations of subroutines may be nested to any level (recursive as a special case), hence the stack structure. If, for example, a subroutine DrawSquare calls a subroutine DrawLine from four different places, DrawLine must know where to return when its execution completes. To accomplish this, the address following the call instruction, the return address, is pushed onto the call stack with each call.

Since the call stack is organized as a stack, the caller pushes the return address onto the stack, and the called subroutine, when it finishes, pulls or pops the return address off the call stack and transfers control to that address. If a called subroutine calls on yet another subroutine, it will push another return address onto the call stack, and so on, with the information stacking up and unstacking as the program dictates. If the pushing consumes all of the space allocated for the call stack, an error called a stack overflow occurs, generally causing the program to crash. Adding a subroutine's entry to the call stack is sometimes called "winding"; conversely, removing entries is "unwinding".


...
Wikipedia

...