Authorities differ on the meaning of calcination (also referred to as calcining). The IUPAC defines it as 'heating to high temperatures in air or oxygen'. However, calcination is also used to mean a thermal treatment process in the absence or limited supply of air or oxygen applied to ores and other solid materials to bring about a thermal decomposition. A calciner is a steel cylinder that rotates inside a heated furnace and performs indirect high-temperature processing (550–1150 °C, or 1000–2100 °F) within a controlled atmosphere.
The process of calcination derives its name from the Latin calcinare (to burn lime) due to its most common application, the decomposition of calcium carbonate (limestone) to calcium oxide (lime) and carbon dioxide, in order to create cement. The product of calcination is usually referred to in general as "calcine", regardless of the actual minerals undergoing thermal treatment. Calcination is carried out in furnaces or reactors (sometimes referred to as kilns or calciners) of various designs including shaft furnaces, rotary kilns, multiple hearth furnaces, and fluidized bed reactors.
Examples of calcination processes include the following:
Calcination reactions usually take place at or above the thermal decomposition temperature (for decomposition and volatilization reactions) or the transition temperature (for phase transitions). This temperature is usually defined as the temperature at which the standard Gibbs free energy for a particular calcination reaction is equal to zero. For example, in limestone calcination, a decomposition process, the chemical reaction is
The standard Gibbs free energy of reaction is approximated as ΔG°r = 177,100 − 158 T (J/mol). The standard free energy of reaction is 0 in this case when the temperature, T, is equal to 1121 K, or 848 °C.