A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid (gas or liquid) is passed through a solid granular material (usually a catalyst possibly shaped as tiny spheres) at high enough velocities to suspend the solid and cause it to behave as though it were a fluid. This process, known as fluidization, imparts many important advantages to the FBR. As a result, the fluidized bed reactor is now used in many industrial applications.
The solid substrate (the catalytic material upon which chemical species react) material in the fluidized bed reactor is typically supported by a porous plate, known as a distributor. The fluid is then forced through the distributor up through the solid material. At lower fluid velocities, the solids remain in place as the fluid passes through the voids in the material. This is known as a packed bed reactor. As the fluid velocity is increased, the reactor will reach a stage where the force of the fluid on the solids is enough to balance the weight of the solid material. This stage is known as incipient fluidization and occurs at this minimum fluidization velocity. Once this minimum velocity is surpassed, the contents of the reactor bed begin to expand and swirl around much like an agitated tank or boiling pot of water. The reactor is now a fluidized bed. Depending on the operating conditions and properties of solid phase various flow regimes can be observed in this reactor.
Fluidized bed reactors are a relatively new tool in the chemical engineering field. The first fluidized bed gas generator was developed by Fritz Winkler in Germany in the 1920s. One of the first United States fluidized bed reactors used in the petroleum industry was the Catalytic Cracking Unit, created in Baton Rouge, LA in 1942 by the Standard Oil Company of New Jersey (now ExxonMobil). This FBR and the many to follow were developed for the oil and petrochemical industries. Here catalysts were used to reduce petroleum to simpler compounds through a process known as cracking. The invention of this technology made it possible to significantly increase the production of various fuels in the United States.