*** Welcome to piglix ***

CA group


In mathematics, in the realm of group theory, a group is said to be a CA-group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the Feit–Thompson theorem and the classification of finite simple groups. Several important infinite groups are CA-groups, such as free groups, Tarski monsters, and some Burnside groups, and the locally finite CA-groups have been classified explicitly. CA-groups are also called commutative-transitive groups (or CT-groups for short) because commutativity is a transitive relation amongst the non-identity elements of a group if and only if the group is a CA-group.

Locally finite CA-groups were classified by several mathematicians from 1925 to 1998. First, finite CA-groups were shown to be simple or solvable in (Weisner 1925). Then in the Brauer-Suzuki-Wall theorem (Brauer, Suzuki & Wall 1958), finite CA-groups of even order were shown to be Frobenius groups, abelian groups, or two dimensional projective special linear groups over a finite field of even order, PSL(2, 2f) for f ≥ 2. Finally, finite CA-groups of odd order were shown to be Frobenius groups or abelian groups in (Suzuki 1957), and so in particular, are never non-abelian simple.


...
Wikipedia

...