*** Welcome to piglix ***

Locally finite group


In mathematics, in the field of group theory, a locally finite group is a type of group that can be studied in ways analogous to a finite group. Sylow subgroups, Carter subgroups, and abelian subgroups of locally finite groups have been studied. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov.

A locally finite group is a group for which every finitely generated subgroup is finite.

Since the cyclic subgroups of a locally finite group are finite, every element has finite order, and so the group is periodic.

Examples:

Non-examples:

The class of locally finite groups is closed under subgroups, quotients, and extensions (Robinson 1996, p. 429).

Locally finite groups satisfy a weaker form of Sylow's theorems. If a locally finite group has a finite p-subgroup contained in no other p-subgroups, then all maximal p-subgroups are finite and conjugate. If there are finitely many conjugates, then the number of conjugates is congruent to 1 modulo p. In fact, if every countable subgroup of a locally finite group has only countably many maximal p-subgroups, then every maximal p-subgroup of the group is conjugate (Robinson 1996, p. 429).

The class of locally finite groups behaves somewhat similarly to the class of finite groups. Much of the 1960s theory of formations and Fitting classes, as well as the older 19th century and 1930s theory of Sylow subgroups has an analogue in the theory of locally finite groups (Dixon 1994, p. v.).


...
Wikipedia

...