In physics, a breather is a nonlinear wave in which energy concentrates in a localized and oscillatory fashion. This contradicts with the expectations derived from the corresponding linear system for infinitesimal amplitudes, which tends towards an even distribution of initially localized energy.
A discrete breather is a breather solution on a nonlinear lattice.
The term breather originates from the characteristic that most breathers are localized in space and oscillate (breathe) in time. But also the opposite situation: oscillations in space and localized in time, is denoted as a breather.
A breather is a localized periodic solution of either continuous media equations or discrete lattice equations. The exactly solvable sine-Gordon equation and the focusing nonlinear Schrödinger equation are examples of one-dimensional partial differential equations that possess breather solutions. Discrete nonlinear Hamiltonian lattices in many cases support breather solutions.
Breathers are solitonic structures. There are two types of breathers: standing or traveling ones. Standing breathers correspond to localized solutions whose amplitude vary in time (they are sometimes called oscillons). A necessary condition for the existence of breathers in discrete lattices is that the breather main frequency and all its multipliers are located outside of the phonon spectrum of the lattice.