In mathematical analysis and related areas of mathematics, a set is called bounded, if it is, in a certain sense, of finite size. Conversely, a set which is not bounded is called unbounded. The word bounded makes no sense in a general topological space without a metric.
A set S of real numbers is called bounded from above if there is a real number k such that k ≥ s for all s in S. The number k is called an upper bound of S. The terms bounded from below and lower bound are similarly defined.
A set S is bounded if it has both upper and lower bounds. Therefore, a set of real numbers is bounded if it is contained in a finite interval.
A subset S of a metric space (M, d) is bounded if it is contained in a ball of finite radius, i.e. if there exists x in M and r > 0 such that for all s in S, we have d(x, s) < r. M is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself.
In topological vector spaces, a different definition for bounded sets exists which is sometimes called von Neumann boundedness. If the topology of the topological vector space is induced by a metric which is homogeneous, as in the case of a metric induced by the norm of normed vector spaces, then the two definitions coincide.
A set of real numbers is bounded if and only if it has an upper and lower bound. This definition is extendable to subsets of any partially ordered set. Note that this more general concept of boundedness does not correspond to a notion of "size".