Bombardier beetle | |
---|---|
Brachinus species | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Coleoptera |
Family: | Carabidae |
Tribes | |
Brachinini
Paussini
Ozaenini
Metriini
Bombardier beetles are ground beetles (Carabidae) in the tribes Brachinini, Paussini, Ozaenini, or Metriini—more than 500 species altogether—which are most notable for the defense mechanism that gives them their name: when disturbed, they eject a hot noxious chemical spray from the tip of their abdomen with a popping sound.
The spray is produced from a reaction between two chemical compounds, hydroquinone and hydrogen peroxide, which are stored in two reservoirs in the beetle's abdomen. When the aqueous solution of hydroquinones and hydrogen peroxide reaches the vestibule, catalysts facilitate the decomposition of the hydrogen peroxide and the oxidation of the hydroquinone. Heat from the reaction brings the mixture to near the boiling point of water and produces gas that drives the ejection. The damage caused can be fatal to attacking insects. Some bombardier beetles can direct the spray over a wide range of directions.
Bombardier beetles inhabit all the continents except Antarctica. They typically live in woodlands or grasslands in the temperate zones but can be found in other environments if there are moist places to lay their eggs.
Most species of bombardier beetles are carnivorous, including the larva. The beetle typically hunts at night for other insects, but will often congregate with others of its species when not actively looking for food.
There are two large glands that open at the tip of the abdomen. Each gland is composed of a thick walled vestibule which contains a mixture of catalases and peroxidases produced by the secretory cells that line the vestibule. Both glands are also made up of a thin-walled and compressible reservoir which contains an aqueous solution of hydroquinones and hydrogen peroxide. The hydrogen peroxide and hydroquinones do not react in the reservoir because the environment of the reservoir does not give sufficient energy to fuel the reaction.