Biotite | |
---|---|
Thin tabular biotite aggregate
(Image width: 2.5 mm) |
|
General | |
Category | Dark mica series |
Formula (repeating unit) |
K(Mg,Fe) 3(AlSi 3O 10)(F,OH) 2 |
Crystal system | Monoclinic |
Crystal class | Prismatic (2/m) (same H-M symbol) |
Space group | C2/m |
Identification | |
Color | Dark brown, greenish-brown, blackish-brown, yellow, white |
Crystal habit | Massive to platy |
Twinning | Common on the [310], less common on the {001} |
Cleavage | Perfect on the {001} |
Fracture | Micaceous |
Tenacity | Brittle to flexible, elastic |
Mohs scale hardness | 2.5–3.0 |
Luster | Vitreous to pearly |
Streak | White |
Diaphaneity | Transparent to translucent to opaque |
Specific gravity | 2.7–3.3 |
Optical properties | Biaxial (-) |
Refractive index | nα = 1.565–1.625 nβ = 1.605–1.675 nγ = 1.605–1.675 |
Birefringence | δ = 0.03–0.07 |
Pleochroism | Strong |
Dispersion | r < v (Fe rich); r > v weak (Mg rich) |
Ultraviolet fluorescence | None |
References |
Biotite is a common phyllosilicate mineral within the mica group, with the approximate chemical formula K(Mg,Fe)
3AlSi
3O
10(OH)
2. More generally, it refers to the dark mica series, primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.
Biotite is a sheet silicate. Iron, magnesium, aluminium, silicon, oxygen, and hydrogen form sheets that are weakly bound together by potassium ions. It is sometimes called "iron mica" because it is more iron-rich than phlogopite. It is also sometimes called "black mica" as opposed to "white mica" (muscovite) – both form in some rocks, and in some instances side-by-side.