*** Welcome to piglix ***

Bicyclic compound


A bicyclic molecule (bi = two, cycle = ring) is a molecule that features two joined rings. Bicyclic structures occur widely, for example in many biologically important molecules like α-thujene and camphor. A bicyclic compound can be carbocyclic (all of the ring atoms are carbons), or heterocyclic (the rings atoms consist of at least two different elements), like DABCO. Moreover, the two rings can both be aliphatic (e.g. decalin and norbornane), or can be aromatic (e.g. naphthalene), or a combination of aliphatic and aromatic (e.g. tetralin).

There are three possible modes of ring junction for a bicyclic compound:

Bicyclic molecules have a strict nomenclature. The root of the compound name depends on the total number of atoms in all rings together, possibly followed by a suffix denoting the functional group with the highest priority. Numbering of the carbon chain always begins at one bridgehead atom (where the rings meet) and follows the carbon chain along the longest path, to the next bridgehead atom. Then numbering is continued along the second longest path and so on. Fused and bridged bicyclic compounds get the prefix bicyclo, whereas spirocyclic compounds get the prefix spiro. In between the prefix and the suffix, a pair of brackets with numerals denotes the number of carbon atoms between each of the bridgehead atoms. These numbers are arranged in descending order and are separated by periods. For example, the carbon frame of norbornane contains a total of 7 atoms, hence the root name heptane. This molecule has two paths of 2 carbon atoms and a third path of 1 carbon atom between the two bridgehead carbons, so the brackets are filled in descending order: [2.2.1]. Addition of the prefix bicyclo gives the total name bicyclo[2.2.1]heptane.


...
Wikipedia

...