*** Welcome to piglix ***

Beryllium sulfate

Beryllium sulfate
Beryllium sulfate.svg
Beryllium sulfate 4 hydrate.jpg
Identifiers
13510-49-1 N[???]
7787-56-6 (tetrahydrate) N
3D model (Jmol) Interactive image
ChEBI CHEBI:53473 YesY
ChemSpider 24291 YesY
ECHA InfoCard 100.033.478
EC Number 236-842-2
PubChem 26077
RTECS number DS4800000
Properties
BeSO4
Molar mass 105.075 g/mol (anhydrous)
177.136 g/mol (tetrahydrate)
Appearance white solid
Odor odorless
Density 2.44 g/cm3 (anhydrous)
1.71 g/cm3 (tetrahydrate)
Melting point 110 °C (230 °F; 383 K) (tetrahydrate, −2H2O)
400 °C (dihydrate, dehydr.)
550–600 decomposes
Boiling point 2,500 °C (4,530 °F; 2,770 K) (anhydrate)
580 °C (tetrahydrate)
36.2 g/100 mL (0 °C)
40.0 g/100 mL (20 °C)
54.3 g/100 mL (60 °C)
Solubility insoluble in alcohol
1.4374 (tetrahydrate)
Thermochemistry
90 J/mol K
-1197 kJ/mol
-1088 kJ/mol
Hazards
Safety data sheet ICSC 1351
GHS pictograms Acute Tox. 2 Carc. 1B Aquatic Chronic 2
GHS signal word DANGER
H350, H330, H301, H372, H319, H335, H315, H317, H411
Carc. Cat. 2
Very toxic (T+)
Dangerous for the environment (N)
R-phrases R49, R25, R26, R36/37/38, R43, R48/23, R51/53
S-phrases S53, S45
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose)
82 mg/kg (rat, oral)
80 mg/kg (mouse, oral)
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.002 mg/m3
C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be)
REL (Recommended)
Ca C 0.0005 mg/m3 (as Be)
IDLH (Immediate danger)
Ca [4 mg/m3 (as Be)]
Related compounds
Other cations
Magnesium sulfate
Calcium sulfate
Strontium sulfate
Barium sulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Beryllium sulfate normally encountered as the tetrahydrate, [Be(H2O)4]SO4 is a white crystalline solid. It was first isolated in 1815 by Jons Jakob Berzelius.

Beryllium sulfate may be prepared by treating an aqueous solution of any beryllium salt with sulfuric acid, followed by evaporation of the solution and crystallization. The hydrated product may be converted to anhydrous salt by heating at 400 °C. The tetrahydrate contains a tetrahedral Be(OH2)42+ unit and sulfate anions. The small size of the Be2+ cation determines the number of water molecules that can be coordinated. This contrasts with the analogous magnesium salt, MgSO4·6H2O which contains an octahedral Mg(OH2)62+ unit.

The anhydrous compound has a structure similar to that of berlinite. The structure contains alternating tetrahedrally coordinated Be and S and each oxygen is 2 coordinate (Be-O-S). The Be-O distance is 156 pm and the S-O distance is 150 pm.

A mixture of beryllium and radium sulfate was used as the neutron source in the discovery of nuclear fission.


...
Wikipedia

...