*** Welcome to piglix ***

Benzylideneacetone

Benzylideneacetone
Benzylideneacetone-2D-skeletal.png
Benzylideneacetone-3D-balls.png
Names
IUPAC name
(E)-4-Phenylbut-3-ene-2-one
Other names
Benzalacetone
Benzylideneacetone
Methyl styryl ketone
Benzylidene acetone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.004.142
EC Number 204-555-1 (trans)
PubChem CID
RTECS number EN0330000
UNII
Properties
C10H10O
Molar mass 146.19 g/mol
Appearance pale yellow solid
Density 1.008 g/cm3
Melting point 39 to 42 °C (102 to 108 °F; 312 to 315 K)
Boiling point 260 to 262 °C (500 to 504 °F; 533 to 535 K)
1.3 g/L
Solubility in other solvents nonpolar solvents
Hazards
Main hazards irritant
GHS pictograms The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Warning
H315, H317, H319, H335
P261, P264, P271, P272, P280, P302+352, P304+340, P305+351+338, P312, P321, P332+313, P333+313, P337+313, P362
Flash point 116 °C (241 °F; 389 K)
Related compounds
Related compounds
Dibenzylideneacetone
cinnamaldehyde
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Benzylideneacetone is the organic compound described by the formula C6H5CH=CHC(O)CH3. Although both cis- and trans-isomers are possible for the α,β-unsaturated ketone, only the trans isomer is observed. Its original preparation demonstrated the scope of condensation reactions to construct new, complex organic compounds. Benzylideneacetone is used as a flavouring ingredient in food and perfumes.

Benzylideneacetone can be efficiently prepared by the NaOH-induced condensation of the readily available reagents acetone and benzaldehyde:

However, the benzylideneacetone formed via this reaction can undergo another Claisen-Schmidt condensation with another molecule of benzaldehyde to form dibenzylideneacetone. Because relatively weak bases such as NaOH make very little of the enolate ion at equilibrium, there is still a lot of unreacted base left in the reaction mixture, which can go on and remove protons from the alpha carbon of benzylideneacetone, allowing it to undergo another Claisen-Schmidt condensation and make dibenzylideneacetone.

If, on the other hand, lithium diisopropylamide (LDA) is used as the base, all of the acetone will deprotonated, making enolate ion quantitatively. Therefore, the most efficient way to make benzylideneacetone is to use equimolar amounts of LDA, acetone, and benzaldehyde. Because LDA is an extremely strong base, the reaction must be done in an inert solvent, such as THF or ether.

BenzalacetonePreparationUsingLDA.png


...
Wikipedia

...