*** Welcome to piglix ***

Bellini–Tosi direction finder


A Bellini–Tosi direction finder (B–T or BTDF) is a type of radio direction finder (RDF), which determines the direction to, or bearing of, a radio transmitter. Earlier RDF systems used very large rotating loop antennae, which the B–T system replaced with two fixed antennae and a small rotating loop, known as a radiogoniometer. This made RDF much more practical, especially on large vehicles like ships or when using very long wavelengths that demand large antennae.

BTDF was invented by a pair of Italian officers in the early 1900s, and is sometimes known as a Marconi–Bellini–Tosi after they joined forces with the Marconi Company in 1912. BTDF was the most prevalent form of naval direction finding from the 1920s to well into the 1980s, and were a used as a major part of early long-distance air navigation systems from the 1930s until after World War II. BTDF systems were also widely used for military signals intelligence gathering.

During the war, new techniques like huff-duff began to replace radiogoniometers in the intelligence gathering role, reducing the time needed to take an accurate fix from minutes to seconds. The ability to inexpensively process radio signals using microcontrollers allowed pseudo-doppler direction finders to take over most of the radiogoniometer's remaining roles from the 1980s. In spite of seeing little use today, the original antennae of BTDF systems can still be seen on many ships and boats.

The earliest experiments in RDF were carried out in 1888 when Heinrich Hertz discovered the directionality of an open loop of wire used as an antenna. He noticed that the spark generated at the open gap between the ends of the loop was much stronger when the loop was end-on to the transmitter, and disappeared entirely when it was aligned face-on to the transmitter.

By the early 1900s, many experimenters were looking for ways to use this concept for locating the position of a transmitter. Early radio systems generally used longwave or medium wave signals. Longwave, in particular, had good long-distance transmission characteristics due to their limited interaction with the ground, and thereby provided excellent great circle route ground wave propagation that pointed directly to the transmitter. Methods of performing RDF on longwave signals was a major area of research during the 1900s and 1910s.


...
Wikipedia

...