*** Welcome to piglix ***

Bayesian experimental design


Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as uncertainties in observations.

The theory of Bayesian experimental design is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome. The utility is most commonly defined in terms of a measure of the accuracy of the information provided by the experiment (e.g. the Shannon information or the negative variance), but may also involve factors such as the financial cost of performing the experiment. What will be the optimal experiment design depends on the particular utility criterion chosen.

If the model is linear, the prior probability density function (PDF) is homogeneous and observational errors are normally distributed, the theory simplifies to the classical optimal experimental design theory.

In numerous publications on Bayesian experimental design, it is (often implicitly) assumed that all posterior PDFs will be approximately normal. This allows for the expected utility to be calculated using linear theory, averaging over the space of model parameters, an approach reviewed in Chaloner & Verdinelli (1995). Caution must however be taken when applying this method, since approximate normality of all possible posteriors is difficult to verify, even in cases of normal observational errors and uniform prior PDF.

Recently, increased computational resources allow inference of the posterior distribution of model parameters, which can directly be used for experiment design. Vanlier et al. (2012) proposed an approach that uses the posterior predictive distribution to assess the effect of new measurements on prediction uncertainty, while Liepe et al. (2013) suggest maximizing the mutual information between parameters, predictions and potential new experiments.


...
Wikipedia

...