Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.
Bass–Serre theory was developed by Jean-Pierre Serre in the 1970s and formalized in Trees, Serre's 1977 monograph (developed in collaboration with Hyman Bass) on the subject. Serre's original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. However, the theory quickly became a standard tool of geometric group theory and geometric topology, particularly the study of 3-manifolds. Subsequent work of Hyman Bass contributed substantially to the formalization and development of basic tools of the theory and currently the term "Bass–Serre theory" is widely used to describe the subject.
Mathematically, Bass–Serre theory builds on exploiting and generalizing the properties of two older group-theoretic constructions: free product with amalgamation and HNN extension. However, unlike the traditional algebraic study of these two constructions, Bass–Serre theory uses the geometric language of covering theory and fundamental groups. Graphs of groups, which are the basic objects of Bass–Serre theory, can be viewed as one-dimensional versions of orbifolds.