*** Welcome to piglix ***

Bézout's theorem


Bézout's theorem is a statement in algebraic geometry concerning the number of common points, or intersection points, of two plane algebraic curves, which do not share a common component (that is, which do not have infinitely many common points). The theorem claims that the number of common points of two such curves is at most equal to the product of their degrees, and equality holds if one counts points at infinity, points with complex coordinates (or more generally, coordinates from the algebraic closure of the ground field), and if each point is counted with its intersection multiplicity.

Bézout's theorem refers also to the generalization to higher dimensions: Let there be n homogeneous polynomials in n+1 variables, of degrees , that define n hypersurfaces in the projective space of dimension n. If the number of intersection points of the hypersurfaces is finite over an algebraic closure of the ground field, then this number is if the points are counted with their multiplicity. As in the case of two variables, in the case of affine hypersurfaces, and when not counting multiplicities nor non-real points, this theorem provides only an upper bound of the number of points, which is often reached. This is often referred to as Bézout's bound.


...
Wikipedia

...