*** Welcome to piglix ***

Aspartate carbamoyltransferase

Aspartate carbamoyltransferase
Apartate-carbamoyltransferase-pdb-2ATC.png
Aspartate carbamoyltransferase from Escherichia coli. PDB 2ATC.
Identifiers
EC number 2.1.3.2
CAS number 9012-49-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Human carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase
Identifiers
Symbol CAD
Entrez 790
HUGO 1424
OMIM 114010
RefSeq NM_004341
UniProt P27708
Other data
EC number 2.1.3.2
Locus Chr. 2 p22-p21

Aspartate carbamoyltransferase (also known as aspartate transcarbamoylase or ATCase) catalyzes the first step in the pyrimidine biosynthetic pathway (EC 2.1.3.2).

In E. coli, the enzyme is a multi-subunit protein complex composed of 12 subunits (300 kDa in total). The composition of the subunits is C6R6, forming 2 trimers of catalytic subunits (34 kDa) and 3 dimers of regulatory subunits (17 kDa). The particular arrangement of catalytic and regulatory subunits in this enzyme affords the complex with strongly allosteric behaviour with respect to its substrates. The enzyme is an archetypal example of allosteric modulation of fine control of metabolic enzyme reactions.

ATCase does not follow Michaelis-Menten kinetics, but lies between the low-activity, low-affinity "tense" or T and the high-activity, high-affinity "relaxed" or R states. The binding of substrate to the catalytic subunits results in an equilibrium shift towards the R state, whereas binding of CTP to the regulatory subunits results in an equilibrium shift towards the T state. Binding of ATP to the regulatory subunits results in an equilibrium shift towards the R state.

ATCase is a highly regulated enzyme that catalyses the first committed step in pyrimidine biosynthesis, the condensation of l-aspartate and carbamoyl phosphate to form N-carbamyl-L-aspartate and inorganic phosphate. ATCase controls the rate of pyrimidine biosynthesis by altering its catalytic velocity in response to cellular levels of both pyrimidines and purines. The end-product of the pyrimidine pathway, CTP, decreases catalytic velocity, whereas ATP, the end-product of the parallel purine pathway, increases catalytic velocity.


...
Wikipedia

...