Arthur Lesk | |
---|---|
Arthur M. Lesk speaking at the ISMB conference in 2015.
|
|
Born | Arthur Mallay Lesk |
Institutions | |
Alma mater |
|
Thesis | Valence Bond Configuration Interaction Studies on the Chemical Bonding of the Noble Gases (1966) |
Academic advisors | |
Known for | Introduction to Bioinformatics and other textbooks |
Website bmb |
Arthur Mallay Lesk, is a protein science researcher, who is a professor of biochemistry and molecular biology at the Pennsylvania State University in University Park.
Lesk received a bachelor's degree, magna cum laude, from Harvard University in 1961. He received his doctoral degree from Princeton University in 1966. He also received a master's degree from the University of Cambridge in the United Kingdom in 1999.
Lesk has made significant contributions to the study of protein evolution. He and Cyrus Chothia, working at the Medical Research Council (UK) Laboratory of Molecular Biology in Cambridge, United Kingdom, discovered the relationship between changes in amino-acid sequence and changes in protein structure by analyzing the mechanism of evolution in protein families. This discovery has provided the quantitative basis for the most successful and widely used method of structure prediction, known as homology modelling.
Lesk and Chothia also studied the conformations of antigen-binding sites of immunoglobulins. They discovered the “canonical-structure model” for the conformation of the complementarity-determining regions of antibodies, and they applied this model to the analysis of antibody-germ-line genes, including the prediction of the structure of the corresponding proteins. This work has supported the “humanization” of antibodies for therapy in the treatment of cancer. “This approach to cancer therapy is based on the observation of H. Waldmann that rats can raise antibodies against human cancers, but that the rat antibodies lead to immune responses, similar to allergies, in human patients,” Lesk explains. “Humanization of these antibodies is the formation of hybrid molecules that are more human than rat, but that retain the therapeutic activity while reducing the patient’s immune response.”
Lesk’s work also involves the detailed comparison of proteins in different structural states as a means for understanding the mechanisms that enable the proteins to change conformation, both as part of their normal activity and in disease. The discovery and analysis of these mechanisms was the key to understanding conformation changes in serine protease inhibitors, also known as serpins, mutations of which are an important cause of several diseases, including emphysema and certain types of inherited mental illness.