*** Welcome to piglix ***

Arguments


In philosophy and logic, an argument is a series of statements typically used to persuade someone of something or to present reasons for accepting a conclusion. The general form of an argument in a natural language is that of premises (typically in the form of propositions, statements or sentences) in support of a claim: the conclusion. The structure of some arguments can also be set out in a formal language, and formally defined "arguments" can be made independently of natural language arguments, as in math, logic, and computer science.

In a typical deductive argument, the premises guarantee the truth of the conclusion, while in an inductive argument, they are thought to provide reasons supporting the conclusion's probable truth. The standards for evaluating non-deductive arguments may rest on different or additional criteria than truth, for example, the persuasiveness of so-called "indispensability claims" in transcendental arguments, the quality of hypotheses in retroduction, or even the disclosure of new possibilities for thinking and acting.

The standards and criteria used in evaluating arguments and their forms of reasoning are studied in logic. Ways of formulating arguments effectively are studied in rhetoric (see also: argumentation theory). An argument in a formal language shows the logical form of the symbolically represented or natural language arguments obtained by its interpretations.

Informal arguments as studied in informal logic, are presented in ordinary language and are intended for everyday discourse. Conversely, formal arguments are studied in formal logic (historically called symbolic logic, more commonly referred to as mathematical logic today) and are expressed in a formal language. Informal logic may be said to emphasize the study of argumentation, whereas formal logic emphasizes implication and inference. Informal arguments are sometimes implicit. That is, the rational structure – the relationship of claims, premises, warrants, relations of implication, and conclusion – is not always spelled out and immediately visible and must sometimes be made explicit by analysis.


...
Wikipedia

...