*** Welcome to piglix ***

Areas of mathematics


Mathematics encompasses a growing variety and depth of subjects over history, and comprehension requires a system to categorize and organize the many subjects into more general areas of mathematics. A number of different classification schemes have arisen, and though they share some similarities, there are differences due in part to the different purposes they serve. In addition, as mathematics continues to be developed, these classification schemes must change as well to account for newly created areas or newly discovered links between different areas. Classification is made more difficult by some subjects, often the most active, which straddle the boundary between different areas.

A traditional division of mathematics is into pure mathematics, mathematics studied for its intrinsic interest, and applied mathematics, mathematics which can be directly applied to real world problems. This division is not always clear and many subjects have been developed as pure mathematics to find unexpected applications later on. Broad divisions, such as discrete mathematics and computational mathematics, have emerged more recently.

An ideal system of classification permits adding new areas into the organization of previous knowledge, and fitting surprising discoveries and unexpected interactions into the outline. For example, the Langlands program has found unexpected connections between areas previously thought unconnected, at least Galois groups, Riemann surfaces and number theory.

Arithmetic is the study of numbers and the properties of operations between them.

The study of structure begins with numbers, first the familiar natural numbers and integers and their arithmetical operations, which are recorded in elementary algebra. The deeper properties of these numbers are studied in number theory. The investigation of methods to solve equations leads to the field of abstract algebra, which, among other things, studies rings and fields, structures that generalize the properties possessed by everyday numbers. Long standing questions about compass and straightedge construction were finally settled by Galois theory. The physically important concept of vectors, generalized to vector spaces, is studied in linear algebra.


...
Wikipedia

...