Apparent retrograde motion is the apparent motion of a planet in a direction opposite to that of other bodies within its system, as observed from a particular vantage point. Direct motion or prograde motion is motion in the same direction as other bodies.
While the terms direct and prograde are equivalent in this context, the former is the traditional term in astronomy. The earliest recorded use of prograde was in the early 18th century, although the term is now less common.
The term retrograde is from the Latin word retrogradus – "backward-step", the affix retro- meaning "backwards" and gradus "step". Retrograde is most commonly an adjective used to describe the path of a planet as it travels through the night sky, with respect to the zodiac, stars, and other bodies of the celestial . In this context, the term refers to planets, as they appear from Earth, to stop briefly and reverse direction at certain times though in reality, of course, we now understand that they perpetually orbit in the same uniform direction.
"Mercury in retrograde" is an example of the term used as a noun for retrograde motion. Retrograde is also sometimes used as an intransitive verb meaning to become, to appear, to behave—or appear to move—in a retrograde fashion.
Although planets can sometimes be mistaken for stars as one observes the night sky, the planets actually change position from night to night in relation to the stars. Retrograde (backward) and prograde (forward) are observed as though the stars revolve around the Earth. Ancient Greek astronomer Ptolemy in 150 AD believed that the Earth was the center of the Solar System and therefore used the terms retrograde and prograde to describe the movement of the planets in relation to the stars. Although it is known today that the planets revolve around the sun, the same terms continue to be used in order to describe the movement of the planets in relation to the stars as they are observed from Earth. Like the sun, the planets appear to rise in the East and set in the West. When a planet travels eastward in relation to the stars, it is called prograde. When the planet travels westward in relation to the stars (opposite path) it is called retrograde.
When we observe the sky, the Sun, Moon, and stars appear to move from east to west because of the rotation of Earth (so-called diurnal motion). However, orbiters such as the Space Shuttle and many artificial satellites appear to move from west to east. These are direct satellites (they actually orbit Earth in the same direction as the Moon), but they orbit Earth faster than Earth itself rotates, and so appear to move in the opposite direction of the Moon. Mars has a natural satellite Phobos, with a similar orbit. From the surface of Mars it appears to move in the opposite direction because its orbital period is less than a Martian day. There are also smaller numbers of truly retrograde artificial satellites orbiting Earth which counter-intuitively appear to move westward, in the same direction as the Moon.