*** Welcome to piglix ***

Anticomplementary triangle


The medial triangle or midpoint triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC and BC. It is the n=3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of ABC.

Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to half the length of the third side.

The medial triangle can also be viewed as the image of triangle ABC transformed by a homothety centered at the centroid with ratio -1/2. Thus, the sides of the medial triangle are half and parallel to the corresponding sides of triangle ABC. Hence, the medial triangle is inversely similar and shares the same centroid and medians with triangle ABC. It also follows from this that the perimeter of the medial triangle equals the semiperimeter of triangle ABC, and that the area is one quarter of the area of triangle ABC. Furthermore, the four triangles that the original triangle is subdivided into by the medial triangle are all mutually congruent by SSS, so their areas are equal and thus the area of each is 1/4 the area of the original triangle.

The orthocenter of the medial triangle coincides with the circumcenter of triangle ABC. This fact provides a tool for proving collinearity of the circumcenter, centroid and orthocenter. The medial triangle is the pedal triangle of the circumcenter. The nine-point circle circumscribes the medial triangle, and so the nine-point center is the circumcenter of the medial triangle.


...
Wikipedia

...