*** Welcome to piglix ***

Antenna array (electromagnetic)


An antenna array (or array antenna) is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antenna elements are connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together (interfering constructively) to enhance the power radiated in desired directions, and cancelling (interfering destructively) to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions.

An antenna array can achieve higher gain (directivity), that is a narrower beam of radio waves, than could be achieved by a single antenna. In general, the larger the number of individual antenna elements used, the higher the gain and the narrower the beam. Some antenna arrays (such as military phased array radars) are composed of thousands of elements. Arrays can be used to achieve higher gain, to give path diversity (also called MIMO) which increases communication reliability, to cancel interference from specific directions, to steer the radio beam electronically to point in different directions, and for radio direction finding (RDF).

The term antenna array most commonly means a driven array consisting of multiple identical driven elements all connected to the receiver or transmitter, often half-wave dipoles fed in phase. A parasitic array consists of a single driven element connected to the feedline, and other elements which are not, called parasitic elements. It is usually another name for a Yagi-Uda antenna.


...
Wikipedia

...