*** Welcome to piglix ***

Aneutronic fusion


Aneutronic fusion is any form of fusion power in which neutrons carry no more than 1% of the total released energy. The most-studied fusion reactions release up to 80% of their energy in neutrons. Successful aneutronic fusion would greatly reduce problems associated with neutron radiation such as ionizing damage, neutron activation and requirements for biological shielding, remote handling and safety.

Some proponents see a potential for dramatic cost reductions by converting energy directly to electricity. However, the conditions required to harness aneutronic fusion are much more extreme than those required for the conventional deuteriumtritium (D-T) nuclear fuel cycle.

Multiple fusion reactions have no neutrons as products on any of their branches. Those with the largest cross sections are these:

The deuterium reactions produce some neutrons with D-D side reactions. Although these can be minimized by running hot and deuterium-lean, the fraction of energy released as neutrons is probably several percent, so that these fuel cycles, although neutron-poor, do not meet the 1% threshold. See Helium-3. These reactions also suffer from the 3He fuel availability problem, as discussed below.

The proton-lithium-6, helium-3-lithium, and helium-3-helium-3 reaction rates are not particularly high in a thermal plasma. When treated as a chain, however, they offer the possibility of enhanced reactivity due to a non-thermal distribution. The product 3He from the Proton-lithium-6 reaction could participate in the second reaction before thermalizing, and the product p from helium-3-lithium could participate in the former before thermalizing. Unfortunately, detailed analyses do not show sufficient reactivity enhancement to overcome the inherently low cross section.

The pure 3He reaction suffers from a fuel-availability problem. 3He occurs in only minuscule amounts naturally on Earth, so it would either have to be bred from neutron reactions (counteracting the potential advantage of aneutronic fusion), or mined from extraterrestrial sources. The top several meters of the surface of the Moon is relatively rich in 3He on the order of 0.01 parts per million by weight, but mining this resource and returning it to Earth would be relatively difficult and expensive. 3He could in principle be recovered from the atmospheres of the gas giant planets, Jupiter, Saturn, Neptune and Uranus, but this would be even more challenging. The amount of fuel needed for large-scale applications can also be put in terms of total consumption: according to the US Energy Information Administration, "Electricity consumption by 107 million U.S. households in 2001 totaled 1,140 billion kW·h" (1.14×1015 W·h). Again assuming 100% conversion efficiency, 6.7 tonnes per year of helium-3 would be required for that segment of the energy demand of the United States, 15 to 20 tonnes per year given a more realistic end-to-end conversion efficiency. Extracting that amount of pure helium-3 would entail processing 2 billion tonnes of lunar material per year, even assuming a recovery rate of 100%.


...
Wikipedia

...