An Essay towards solving a Problem in the Doctrine of Chances is a work on the mathematical theory of probability by the Reverend Thomas Bayes, published in 1763, two years after its author's death, and containing multiple amendments and additions due to his friend Richard Price. The title comes from the contemporary use of the phrase "doctrine of chances" to mean the theory of probability, which had been introduced via the title of a book by Abraham de Moivre. Contemporary reprints of the Essay carry a more specific and significant title: A Method of Calculating the Exact Probability of All Conclusions founded on Induction.
The Essay includes theorems of conditional probability which form the basis of what is now called Bayes's Theorem, together with a detailed treatment of the problem of setting a prior probability.
Bayes supposed a sequence of independent experiments, each having as its outcome either success or failure, the probability of success being some number p between 0 and 1. But then he supposed p to be an uncertain quantity, whose probability of being in any interval between 0 and 1 is the length of the interval. In modern terms, p would be considered a random variable uniformly distributed between 0 and 1. Conditionally on the value of p, the trials resulting in success or failure are independent, but unconditionally (or "marginally") they are not. That is because if a large number of successes are observed, then p is more likely to be large, so that success on the next trial is more probable. The question Bayes addressed was: what is the conditional probability distribution of p, given the numbers of successes and failures so far observed. The answer is that its probability density function is