In algebraic geometry, a very ample line bundle is one with enough global sections to set up an embedding of its base variety or manifold into projective space. An ample line bundle is one such that some positive power is very ample. Globally generated sheaves are those with enough sections to define a morphism to projective space.
Given a morphism , any vector bundle on Y, or more generally any sheaf in modules, e.g. a coherent sheaf, can be pulled back to X, (see Inverse image functor). This construction preserves the condition of being a line bundle, and more generally the rank.