![]() |
|
Identifiers | |
---|---|
3D model (Jmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.041.126 |
EC Number | 245-555-0 |
PubChem CID
|
|
|
|
|
|
Properties | |
AlAs | |
Molar mass | 101.9031 g/mol |
Appearance | orange crystals |
Density | 3.72 g/cm3 |
Melting point | 1,740 °C (3,160 °F; 2,010 K) |
reacts | |
Solubility | reacts in ethanol |
Band gap | 2.12 eV (indirect) |
Electron mobility | 200 cm2/(V·s) (300 K) |
Thermal conductivity | 0.9 W/(cm·K) (300 K) |
Refractive index (nD)
|
3 (infrared) |
Structure | |
Zinc Blende | |
T2d-F-43m | |
Tetrahedral | |
Thermochemistry | |
Std molar
entropy (S |
60.3 J/mol K |
Std enthalpy of
formation (ΔfH |
-116.3 kJ/mol |
Hazards | |
US health exposure limits (NIOSH): | |
PEL (Permissible)
|
[1910.1018] TWA 0.010 mg/m3 |
REL (Recommended)
|
Ca C 0.002 mg/m3 [15-minute] |
IDLH (Immediate danger)
|
Ca [5 mg/m3 (as As)] |
Related compounds | |
Related semiconductor materials
|
Aluminium gallium arsenide, Aluminium indium arsenide, Aluminium antimonide, Boron arsenide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
![]() ![]() ![]() |
|
Infobox references | |
Aluminium arsenide or aluminum arsenide (AlAs) is a semiconductor material with almost the same lattice constant as gallium arsenide and aluminium gallium arsenide and wider band gap than gallium arsenide. (AlAs) can form a superlattice with gallium arsenide (GaAs) which results in its semiconductor properties. Because (GaAs) and (AlAs) have almost the same lattice constant, the layers have very little induced strain, which allows them to be grown almost arbitrarily thick. This allows for extremely high performance high electron mobility, HEMT transistors, and other quantum well devices.
It has the following properties:
Aluminum arsenide is a III-V compound semiconductor material and is an advantageous material for the manufacture of optoelectronic devices, such as light emitting diodes.
Aluminum arsenide can be prepared using well-known methods, such as liquid and vapor-phase epitaxy techniques or melt-growth techniques. However, aluminum arsenide crystals prepared by these methods are generally unstable and generate arsine (AsH3) when exposed to moist air.
Little work has been reported on the preparation of aluminum arsenide, mainly because of the practical difficulties involved. Preparation from the melt is difficult because of the high melting point of the compound (about 1,700 °C) and of the extreme reactivity of aluminum at this temperature. A few workers have prepared small crystals from the melt, and polycrystalline ingots have also been produced. The best of this material has an impurity carrier density of the order of 1019/cm3 and is p-type.