In mathematics, a group is said to be almost simple if it contains a non-abelian simple group and is contained within the automorphism group of that simple group: if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group A is almost simple if there is a simple group S such that
The full automorphism group of a nonabelian simple group is a complete group (the conjugation map is an isomorphism to the automorphism group), but proper subgroups of the full automorphism group need not be complete.
By the Schreier conjecture, now generally accepted as a corollary of the classification of finite simple groups, the outer automorphism group of a finite simple group is a solvable group. Thus a finite almost simple group is an extension of a solvable group by a simple group.