Alexander Pines | |
---|---|
Born |
Tel Aviv, Mandatory Palestine (today Israel) |
June 22, 1945
Fields | Chemistry |
Institutions |
University of California, Berkeley Lawrence Berkeley National Laboratory |
Alma mater | Massachusetts Institute of Technology |
Doctoral advisor | John S. Waugh |
Notable awards | Teaching Excellence Award; Langmuir Medal; Faraday Medal; Wolf Prize; Member, National Academy of Sciences; Foreign Member, Royal Society, Russell Varian Prize |
Alexander Pines (born June 22, 1945) is an American chemist. He is the Glenn T. Seaborg Professor of Chemistry at the University of California, Berkeley, Senior Scientist in the Materials Sciences Division of the Lawrence Berkeley National Laboratory (LBNL), and a member of the California Institute for Quantitative Biosciences (QB3) and the Department of Bioengineering. He was born in 1945, grew up in Southern Rhodesia (now Zimbabwe) and studied undergraduate mathematics and chemistry in Israel at Hebrew University of Jerusalem. Coming to the United States in 1968, Pines obtained his Ph.D. in chemical physics at M.I.T. in 1972 and joined the Berkeley faculty later that year.
Pines is a pioneer in the development and applications of nuclear magnetic resonance (NMR) spectroscopy of non-liquid samples. In his early work, he demonstrated time-reversal of dipole-dipole couplings in many-body spin systems, and introduced high sensitivity, cross polarization NMR of dilute spins such as carbon-13 in solids (Proton Enhanced Nuclear Induction Spectroscopy), thereby helping to launch the era of modern solid-state NMR in chemistry. He also developed the areas of multiple-quantum spectroscopy, adiabatic sech/tanh inversion pulses, zero-field NMR, double rotation and dynamic-angle spinning, iterative maps for pulse sequences and quantum control, and the quantum geometric phase. His combination of optical pumping and cross-polarization made it possible to observe enhanced NMR of surfaces and the selective "lighting up" of solution NMR and magnetic resonance imaging (MRI) by means of laser-polarized xenon.