Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. One of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth.
A mass spectrum of an organic compound will usually contain a small peak of one mass unit greater than the apparent molecular ion peak (M) of the whole molecule. This is known as the M+1 peak and comes from the handful of molecules that contain a 13C atom in place of a 12C. A molecule containing one carbon atom will be expected to have an M+1 peak of approximately 1.1% of the size of the M peak, as 1.1% of the molecules will have a 13C rather than a 12C. Similarly, a molecule containing two carbon atoms will be expected to have an M+1 peak of approximately 2.2% of the size of the M peak, as there is double the previous likelihood that any molecule will contain a 13C atom.
In the above, the mathematics and chemistry have been simplified, however it can be used effectively to give the number of carbon atoms for small- to medium-sized organic molecules. In the following formula the result should be rounded to the nearest integer:
C = number of C atoms X = amplitude of the M ion peak Y = amplitude of the M+1 ion peak
13C-enriched compounds are used in the research of metabolic processes by means of mass spectrometry. Such compounds are safe because they are non-radioactive. In addition, 13C is used to quantify proteins (quantitative proteomics). One important application is in "Stable isotope labeling with amino acids in cell culture" (SILAC). 13C-enriched compounds are used in medical diagnostic tests such as the urea breath test. Analysis in these tests is usually of the ratio of 13C to 12C by Isotope ratio mass spectrometry.