Albert Erives (Adalberto Jorge Erives) |
|
---|---|
Born |
San Fernando, CA, USA |
March 4, 1972
Residence | Iowa City, Iowa, USA |
Citizenship | United States |
Nationality | American |
Fields | Biology |
Institutions | University of Iowa, Dartmouth College |
Alma mater | California Institute of Technology, University of California, Berkeley |
Doctoral advisor | Michael Levine |
Known for | gene regulation, molecular evolution, genomics |
Notable awards | NSF CAREER award |
Albert Erives (born March 4, 1972) is a developmental geneticist who studies transcriptional enhancers underlying animal development and diseases of development (cancers). Erives also proposed the pacRNA model for the dual origin of the genetic code and universal homochirality. He is known for work at the intersection of genetics, evolution, developmental biology, and gene regulation. He has worked at the California Institute of Technology, University of California, Berkeley, and Dartmouth College, and is a professor at the University of Iowa.
Erives' major work is on “regulatory grammars” for transcriptional enhancers underlying animal development and cancer diseases. Exploiting assemblies for animal genomes, Erives discovered complex gene regulatory codes underlie non-homologous subsets of mechanistically-equivalent enhancers. These codes are composed of a combinatorial “lexicon” of transcription factor (TF) binding sites, functional inflections of those binding sites (so-called “specialized sites” constrained for binding affinity and competition by multiple TFs), and complex site ordering (orientation and positional spacing of those sites). The relationship of these complex regulatory codes within a nucleosomal "regulatory reading frame" is a key goal. His lab’s work also elucidated how a mutational mechanism (microsatellite repeat slippage) plays a significant evolutionary role in functionally adjusting complex binding site arrangements that recruit poly-glutamine rich factors. Correspondingly, Erives lab has pioneered the identification of novel poly-glutamine complex recruiting enhancers that integrate developmental signals, while also identifying polyQ allelic series for key developmental factors targeting those enhancers.