In immunology, affinity maturation is the process by which Tfh cell-activated B cells produce antibodies with increased affinity for antigen during the course of an immune response. With repeated exposures to the same antigen, a host will produce antibodies of successively greater affinities. A secondary response can elicit antibodies with several log-fold greater affinity than in a primary response. Affinity maturation primarily occurs on surface immunoglobulin of germinal center B cells and as a direct result of somatic hypermutation (SHM) and selection by Tfh cells.
The process is thought to involve two interrelated processes, occurring in the germinal centers of the secondary lymphoid organs:
Like the natural prototype, the in vitro affinity maturation is based on the principles of mutation and selection. The in vitro affinity maturation has successfully been used to optimize antibodies, antibody fragments or other peptide molecules like antibody mimetics. Random mutations inside the CDRs are introduced using radiation, chemical mutagens or error-prone PCR. In addition, the genetic diversity can be increased by chain shuffling. Two or three rounds of mutation and selection using display methods like phage display usually results in antibody fragments with affinities in the low nanomolar range.